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1 ÷ STUDY BACKGROUND AND RESULTS

In a number of prior studies liquid propulsion was considered as an alternative to solid rocket

motors for the Space Shuttle boosters. Most recommended liquid oxygen/liquid hydrogen

(LO2/LH2) configurations with four Space Shuttle main engines (SSMEs). The tragic Challenger

accident of January 1986 revived interest in LRBs for the Shuttle, particularly to improve safety.

This study and the companion Martin-Marietta Corporation (MMC) study treated Shuttle

and KSC compatibility and safety in greater depth than previous work. NASA/MSFC led this

study and provided essential wind tunnel data on the larger LRB configurations. NASA/JSC and

their contractor Lockheed Engineering and Management Services Company (LEMSCO) eva--

luated STS compatibility, emphasizing Orbiter wing loads and trajectories constraints. NASA/

KSC and their contractor, Lockheed Space Operations Company (LSOC), also participated in

the LRB study by evaluating the impact of LRB concepts on KSC facilities and operations. To-

gether this government-contractor team provided more depth than a normal Phase A study.

General Dynamics Space Systems Division performed this study with personnel located both

in Huntsville, Alabama and San Diego, California. Our study team included Rocketdyne, TRW,

and Pratt & Whitney for engine concepts; Eagle Engineering for Shuttle interfaces and opera-

tions; Planning Research Corporation (PRC) for KSC interfaces and operations; and Pioneer for

recovery systems. The period of performance for this Phase A concept study was October 1987 to

January 1989. This Executive Summary of the study final report provides a brief overview of the

study methodology, results, and principal recommendations.

1.1 PROGRAM OBJECTIVES AND SIGNIFICANT FINDINGS

The purpose of this study was to determine the feasibility of liquid rocket boosters (LRBs)

replacing solid rocket boosters (SRBs) on the Space Shuttle program. Table 1-1 lists major

findings.

1.2 SIGNIFICANT STUDY ACHIEVEMENTS

The most significant conclusion of this study is that LRBs offer significant safety and perform-

ance advantages over the SRBs currently used by the Space Transportation System (STS) without

major impact to the ongoing program.

Existing, proven technologies are sufficient to support development and operation of pump-

fed LRBs with low risk. A propulsion system test program is needed to reduce risk in pressure-fed
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concepts.ThetransitionfromSRBstoLRBs,includingmodificationof theSTSandsupportfaci-

lities, is manageablethoughchallenging.

Table 1-1. LRBs offer significant advantages over SRBs.

Exceed SRB In:

- Safety

-- Performance

- Environmental impacts

Goals Significant Findings

Satisfy essential design criteria

- Minimal impact on Shuttle

-- Minimal facility impacts

- High reliability

Attractive programmatic features

-- Engine-out, intact abort capability

-- Engine shut down/throttling enabled boost
phase aborts

-- No hazardous propellants in VAB

-- 20K performance increase

-- Enables improved aborts, mission flexibility

- No boost phase SSME throttling

-- Less contaminating exhaust products

-- Minimum Orbiter, ET modifications

-- Down time of STS avoided during transition of
SRB to LRB

- Better operation with STS liftoff/ascent constraints

-- No significant launch pad modiflcatlons

-- Mission accomplished with one LRB engine out

-- Reduced critical areas

- Engine health verified prior to release

Evolutionary capability

Common application of engine and booster In
alternate applications (ALS, Shuttle C,
Standalone)

GSX0150-1

1.3 RECOMMENDED LRB CONFIGURATION

Figure 1-1 shows our recommended LRB concept using a new low-cost main engine that burns

liquid oxygen and liquid hydrogen. A new LO2/LH2 engine in the half-million-pound thrust class

can meet the needs ofSTS LRB and the Air Force's Advanced Launch System (ALS), and serve as

an alternative for Shuttle-C (instead of SSMEs).

Some basic LRB features we recommend include:

Liquid oxygen and liquid hydrogen propellant combination. LO2/LH2 has the least environ-

mental impact and is the same propellant used with the current STS, and core vehicle of the

ALS program. Our second choice is LOE/RP-1, which has been used since the 1950s with the

highly reliable Atlas, Delta, and Saturn launch vehicles. Both have significant safety and envi-

ronmental advantages over storable propellants (N204/MMH). LO2/CH4 was evaluated but
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PROPELLANTS: LO2/LH2

EXPENDABLE(LIMITEDENGINE REUSETBO)

ENGINE THRUST: 515/558 LB (SL/VAC)

DRY WEIGHT: 121,935 LBS.

•BLOW: 820,531 LBS

LENGTH & DIAMETER: 178 X 18 FT

• NEW BOOST PHASE ABORT CAPABILITY

• INCREASED STS PERFORMANCE (70.5 Klb to 160 nmi)

• MISSIONSUCCESS WITH ONE ENGINEOUT

• SHORTER ON-LINE PROCESSINGAT KSC
NO HAZARDOUS PROPELLANTSIN VAB

• CLEAN,NON-TOXICEXHAUST PRODUCTS

• POTENTIALFOR COMMONALITY:

COMMONENGINEFORSTS ANDALSBOOSTERS
REPLACESHUTrLE-C SSME ANDALS CORE

ALLOWS USATO CONCENTRATEON .1BIG NEW
ROCKET ENGINE IN 1990'S

GSX0150-2

Figure 1-1. Recommended LRB concept.

not selected, because the benefits were not significant enough to offset the lack of experience

with and cost of an all-new engine development program based on a new fuel.

A new low-cost, pump-fed engine. This option is considerably more cost-effective than adapt-

ing an existing engine such as the SSME or the earlier, Saturn class first stage of engine to

the LRB.

Four engines on each LRB. This feature will provide the best combination of engine-out capa-

bility, reliability, and cost. Note that these are low complexity engines of the gas-generator-type

cycle, which have been previously flown.

Initiate LRB program as expendable syste m. Recoverable systems with engines designed for

long life cannot compete effectively with less expensive expendable engines. A limited-life

recoverable engine concept offers attractive cost benefits over expendables, although

unresolved issues remain such as the uncertainties in engine recovery/refurbishment and

verification of reuse of an expendable engine.

Diameters up to 18 feet. Such configurations will still maintain STS compatibility. The latest

aerodynamics and wing load study results indicate that vehicle diameters greater than 18 feet

incur performance penalties and limit flight trajectory design options.
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• Common development/production with ALS. The recommended LRB engine can be devel-

oped and produced in common with the USAF ALS program.

1.4 PROGRAM COST

The LRB vehicle can be developed for approximately $2 billion in DDT&E (FY1987 dollars) and

could be in operation as an element of the Space Transportation System by the end of 1996. LRB

recurring production and operations cost are estimated to be $65 million per STS mission.

The LRB program cost estimates are sensitive to a variety of programmatic assumptions.

Cost reductions could be realized through higher LRB or engine production rates or by employing

cost-saving production and management techniques that are being examined in the ongoing

ALS study.

1-4



2 ÷ STUDY APPROACH

Our study approach was to review all previous LRB studies carefully and then generate require-

ments. With these requirements basic trades such as propellant selection were performed, from

which concepts were sized, and then the best were selected using an approved list of criteria.

2.1 BASIC REQUIREMENTS, GROUND RULES, AND ASSUMPTIONS

• Each concept sized for 70 5-Klb payload to 160 nmi due east from KSC

• Intact abort with one LRB engine out

• General Dynamics goal: Full payload Abort to Orbit (105 nmi) with one LRB engine out

• High reliability or probability of mission success (approximately 0.99)

• Virtually no hardware changes to Orbiter

• STS trajectory constraints used on max Q, max G, etc

• Orbiter wing loads limited to current levels

• Changes to external tank (ET) minimized

• Reasonable changes to KSC facilities and GSE (need new mobile launch platform [MLP])

• LRB may or may not be reusable, depending on trade results

• IOC depends on concept, but 1996 is an approximate target

• Growth and evolution being considered

2.2 METHODOLOGY

The breadth of concept options for which an LRB can be considered -- propellant combinations,

new and existing engines, pump- and pressure-fed alternatives, alternate recovery modes, and

evolutionary options -- led us to a concept selection approach in which selections were made in

three stages.

In the first part of the study, engines and propellants were evaluated on the basis of safety,

performance, and STS compatibility. Figure 2-1 shows the 15 combinations of engine type and

propellant combinations that were initially considered. Separately, various recovery options for

those selected LRBs were examined (including the consideration of not recovering the boosters).

Cost comparisons became important at that time. Finally, each candidate was examined for evo-

lution and growth approaches through the analysis of alternate growth paths.

Current engines included those candidates judged suitable for LRB application that are either

in production or can be readily brought into production. In the case of the other pump-fed and

pressure-fed alternatives, propellants were considered that exhibited various features desirable

for LRB applications. New engine designs were based on NASA/MSFC Space Transportation

2-1
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Figure 2-1. Range of LRB concepts evaluated.

Booster Engine (STBE) and Space Transportation Main Engine (S'ITvlE) studies. Pressure-fed

engine data was provided by the engine subcontractors, Rocketdyne and TRW. We also looked at

metallized propellant systems, which offer high density-impulse characteristics, but require tech-

nological advancements.

Figure 2-2 shows that the original 15 concepts were refined and evaluated by a number of trades

and analyses. Initially, attention was focused on propellant safety/environmental impact and Or-

biter wing loading concerns caused by large LRBs. These concerns were later dispelled, as dis-

cussed in Section 4.

Sizing was initially performed using typical propellant density, mixture ratio, and Isp data from

our files. As the engine subcontractors provided data tailored to LRB and as Shuttle trajectory

constraints became better defined, more accurate sizing was performed using our predesign syn-

thesis model FASTPASS. Late in the study we resized the selected concepts for abort to orbit

(ATO) with one LRB engine out and engine throttling to avoid overstressing the ET LO2 tank aft

bulkhead.

l
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Figure 2-2. Approach to LRB concept selection.

To prevent prematurely eliminating a booster class from further consideration, we structured

our approach to ensure that three concepts were carried through the evaluation process for fur-

ther definition: one pressure-fed concept, one pump-fed concept with existing engines, and one

pump-fed concept using new engines. An additional concept was added later that uses a new

pump-fed engine of the split-expander type.

Cost was initially considered a secondary selection criterion. As concepts became better de-

fined, the accuracy of cost estimates improved and their importance increased. Cost was the key

to the recoverability trade.

Growth potential was also treated as a secondary selection criterion, but was significant in

some later choices.

During the study extension from June 1988 to January 1989, we concentrated on three concepts

that all met the basic performance, safety, and compatibility requirements. We reduced cost esti-

mates through a number of trades. For instance, lower-thrust engines can reduce vehicle costs

even though the vehicle becomes larger. We evaluated the cost and schedule risk in each approach.

We predesigned numerous growth options, finding potential commonality with ALS.

Figure 2-3 shows our final concept evaluation based on risk, growth, and cost. In the end, the

final selection criteria boiled down to versatility. A liqt/id oxygen/liquid hydrogen LRB was the
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most versatile primarily because of its commonality with ALS applications. An LO2/RP-1 pump-

fed LRB has features particularly attractive to STS application and should remain under consid-

eration pending the acceptance of a common LRB/ALS program.

BEST

-t
i

LO2

-- la
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Shuttle-C LRB and SSME,
Standalone and ALS LRB
and Core.
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146.2

l,
J
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!
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MEDIUM • Combustion

Instability with Throttling

GOOD • But limited reusability,
development of two engines

GOOD

No environmental impacts

I
195.6

30.5

__1

-_0.2

LO2/RP-1

PRESS FED

POOR • New technology engine
and pressurization system

FAIR • Limited reusability, less
standalone performance, and

two engine development

FAIR • Lowest DDT&E, but large
size equals high unit cost

Upper atmosphere
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Figure 2-3. Concept evaluation summary.

Upper atmosphere contamination
plus pressure vessel hazard
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3 '*'VEHICLE DEFINITION

The LO2/LH2 pump-fed configuration was recommended as the best final concept for the

LRB (see Figure 3-1). This concept offers low technical risks, minimal environmental impacts,

propellant commonality with the current STS, and most importantly, commonality with ALS

concepts. The LO2/LH2 LRB life cycle cost can be significantly reduced by the ALS sharing of

DDT&E costs in engine or booster development and production rate effects.

The engine selected as the baseline for this vehicle concept is the LO2/LH2 gas-generator

cycle engine. The split-expander cycle engine is an alternative that seems promising in reduc-

ing costs and improving reliability. However, this engine cycle needs further technology dem-

onstration. Both the gas generator and split-expander engine concepts result in the same-size

vehicles and have the same interface conditions.

3.1 INCREASED PERFORMANCE CAPABILITIES

From the start of the study our goal has been to build robust performance capabilities into

LRB. Even though our design requirement of 70.5 Klb to 160-nmi altitude is above the landing

weight capability of 58 Klb, LRBs permit delivery of 65 Klb to the Space Station at 220 nmi.

THE STS LIQUID ROCKET BOOSTER

Length (ft)

Diameter (ft)

Boosterdry weight (Ib)

Boostergross weight (Ib)

Engine thrust at sea level (Ib)

SRB

149

12.2

146,000

1,250,000

2,912,000

A A

I-
/J ,-'-_ \\

LRB

178

18.

122,000

821,000

4 x 515,000

Features

• LH2/L02 propellants
• 2219 aluminum tankage
• New low-cost, pump-fed

engines
• 4 engines per booster
• Expendable (engines may

be recovered)
• Existingtechnologies

GSX0150-7

Figure 3-1. Summary of selected L O2/H2 vehicle with new pump-fed engine.
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weightcapabilityof 58Klb,LRBspermitdeliveryof 65Klb to theSpaceStationat 220nmi.

Studiesalsoindicatedthat in orderto providehighreliability,theLRBsrequireengine-out
capability.Therefore,theLRBsaresizedto achieveasafeorbit (abort-to-orbit)withoneLRB

engineout fromliftoff. Theperformancecapabilityrelativeto thecurrentrevisedsolidrocket

motors(RSRMs)is shownin Figure3-2.Performanceanalysisalsoindicatedthat the large
performancecapabilities:

• Enhance abort capabilities with large payloads

• Enable SSMEs to operate at nominal 100% instead of 104% throttle (reduces engine over-

haul and extends life)

reduce engine critical• Eliminate boost stage SSME throttling requirement and

failure modes

• Increase mission planning flexibility (standardized trajectories)

3.2 IMPROVED ABORT CAPABILITIES

One of the first objectives of the LRB program is to improve Shuttle safety by expanding and

improving current abort coverage. There is currently no abort option for solid booster failure

during ascent. The LRB, however, is designed to have hold-down capability on the pad and

engine-out capability during ascent to protect against booster engine failures. LRBs will also
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(lo_% SSME)

R!RM

I (104% SSME)

, i I I i I I
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t
• I

(104% SSME)

M
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Orbital Altitude (nmi)
(28.5-degree Inclination) GSX0150-8

Figure 3-2. LRB performance comparison.
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improveexistingabortmodesbymakinguseof aliquid rocket'sinherentcapabilityto throttle

or shut down on command and the increased performance margin included in the design.

As shown in Figure 3-3, the LRB will improve and expand engine failure abort modes. Per-

haps most importantly, the health of the LRB engines can be verified on the pad before the

vehicle is released. Even if a booster engine should fail on one or both LRBs following release,

the Orbiter is still able to abort to orbit (ATO), that is, still able to achieve a safe earth orbit

only slightly below the target. This engine-out capability is a significant improvement over

solid boosters, which have no recourse should a booster fail.

Current intact abort modes for a single SSME failure during ascent include return to launch

site (RTLS), a transatlantic abort landing (TAL), and an ATO. RTLS and ATO aborts are

preferred because of their quicker accessibility and lower turnaround time. The added per-

formance of LRBs will allow ATO and RTLS aborts to be initiated much sooner in the flight

than currently available. RTLS and ATO windows can be made to nearly overlap, thereby re-

ducing the current dependence on TAL to fill the gap. LRBs can also provide a more favorable

environment for multiple Orbiter SSME failures.

LRBs can greatly improve the chance of recovering the crew and the Orbiter. In the case of

multiple SSME shutdowns, the LRBs may be immediately throttled down to moderate the

attach loads and can use engine gimbaling to reorient the Orbiter on a glide path to return to

ABORT TO ORBIT

BOOSTERsHuTDowNENGINEJ

NOTE:THERE ISCURRENTLY
NO INTACTABORTFOR
ASRM/SRBFAILURE

TRANSATLANTIC
ABORT LANDING

RETURN TO
LAUNCH SITE

1-2BOOSTERENGINEANDJ
1-3SSMESHUTDOWNS I

B

I

2 BOOSTERENGINEJSHUTDOWN

ENGINESVERIFIEDI ATLANTIC;
ON PAD J _

LRBENHANCESCREWANDMISSIONSAFETYDURINGASCENT

Figure 3-3. First-stage contingency abort analysis.
GSX0150-10
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land at KSC. Should a major booster failure occur, the capability of LRBs for commanded

premature shutdown followed by a fast Orbiter separation from the LR'Bs and ET will allow

the Orbiter to perform a wide banking turn that will return it to the landing site. With the

current SRBs, such a fast separation could not even be initiated until after booster burnout

and separation, at which time the Orbiter would be too far downrange.

At present, the only option for multiple SSME failures after 20 seconds into the flight is to

perform a downrange ditch after booster burnout (assuming that attach points do not fail). As

mentioned before, the ability to shut down the LRB engines may allow earlier fast separation

of the LRBs from the stack during an emergency. This ability will also improve the downrange

ditch abort mode by allowing separation of the LRBs while continuing the thrusting of the

SSMEs until an Orbiter reorientation can be accomplished. At present, the only option for

multiple SSME failures after 20 seconds into the flight is to perform a downrange ditch after

booster burnout. Currently, a risky maneuver called the Split-S could be attempted, should

multiple SSMEs fail prior to 20 seconds into the flight. The Split-S involves lofting the

trajectory nearly straight up until SRB burnout, which occurs at around 150,000 ft. The Orbiter

would return to land at KSC after performing a very high g pullout turn. LRBs will allow a

Split-S to be performed even up to 40 seconds into the flight.

The safer new contingency options introduced by the LRB (discussed above) will made the

downrange ditch and the Split-S last-resort choices.

To summarize, current intact abort modes have been improved and the option to ATO is

available sooner because of the performance increase designed into the LRB. Two very impor-

tant booster features that did not previously exist with SRBs -- hold-down and engine-out

capabilities -- have been included in our designs. Finally, due primarily to the ability to

throttle and shut down the LRB engines in real time, current contingency aborts will be made

safer and two new methods for returning the crew and Orbiter to the launch site in the event of

emergency will be possible.

3.3 BOOSTER ENGINE SELECTION

We believe that LRBs must have mission reliability superior to SRBs if the program is to be

viable. The Shuttle crew must be able to safely perform an intact abort if one LRB engine fails.

Figure 3-4 illustrates that high propulsion system reliability can be achieved with engine-out

capability. By comparison with these theoretical numbers, large segmented solid rocket mo-

tors have an actual flight reliability of 0.9765 (based on one Titan failure in 174 flights and one

STS failure in 50 SRB flights). Qualitatively, more booster engines reduces the decrease in

thrust drop if one engine fails, but increases the chances of failure. On the other hand, fewer
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° RELIABILITY SHOULD BE BASED ON AFTER IGNITION & TRANSIENT EFFECTS

(BECAUSE OF HOLD-DOWN CAPABILITY OF LRB)

° SAFETY & RELIABILITY ARE IMPROVED WITH ENGINE-OUT CAPABILITY
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50/1 0.921

224/2 0.9765
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_gure 3-4. Reliability vs. number of engines.

thrust drop if one engine fails, but increases the chances of failure. On the other hand, fewer

engines requires that each engine have a larger thrust, and throttling capability, and wider

gimballing range. We found that two engines provides a minimum of redundancy, but with a

large thrust loss per failure. In contrast, if six engines are used the thrust loss per engine is

smaller, but the probability of failure is higher, and the plumbing complexity and ground

checkout is increased. Therefore, we selected four engines as the best compromise between

reliability, controllability, and throttling range.

3.4 MAIN PROPULSION SYSTEM

The characteristics of the baseline LRB LO2/LH2 gas generator pump-fed engine and the al-

ternate split expander engine configuration are shown in Figure 3-5. The engines were sized to

meet the requirement of abort to orbit with one LRB engine out, a minimum thrust-to-weight

at launch to clear the tower with one engine out, and nominal thrust to weight ratio at launch

for minimum cost. The design characteristics of the selected system are virtually identical to

the present Space Transportation Main Engine (STME) configuration now being studied by

Rocketdyne and Pratt & Whitney under a separate STME/STBE contract for NASA and the

ALS program.
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figure 3-5, Selected L 02/LH2 engine requirements and features.
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Engine performance and cycle type were studied and balanced for the configurations, and

the resultant parameters were used to establish the pertinent combustion chamber, injector,

nozzle, and turbopump characteristics that led to the recommended configuration and physi-

cal design. The integration of the engine and other propulsion features is shown in Figure 3-6.

The smaller size of the nozzles for the LO2/LH2 concept permits a straight skirt design and

therefore fewer modifications of the launch platform.

3.5 STRUCTURAL DESIGN CONSIDERATIONS

The inboard profile and aft skirt and engine features, shown in Figures 3-7 and 3-8, identify the

significant features of the booster structure and systems. The basic structure consists of two

propellant tanks, nose cone, intertank adapter, and engine compartment skirt. The forward

tank contains LO2, the aft tank LH2. The engine compartment comprises skirt shell, thrust,

and launch support structures. All aluminum materials were selected based on established

manufacturing practices and technologies, resulting in low risk and cost.

Both propellant tanks are of integral skin stringer construction, with internal ring frames.

The tank material is 2219 aluminum alloy and all external seams are welded. This type of con-

struction is fail-safe, since it provides crack tear stopper and alternate load paths. Aluminum/

lithium alloys were considered for tankage but not recommended because of questions about

LO2 compatibility and higher cost.

PRESSURIZATION

48.1 FT

ENGINE SYSTEM

• FOUR ENGINES PER BOOSTER
- LO2/1_112 GG BASELINE; SPLIT EXPANDER ALTERNATIVE
• STEP THROTTLE; OPEN LOOP
• EXPENDABLE

• ANTIGEYSER SYSTEM
• NO P/U SYSTEM

LO2 FEED t INE

PRE
FROM ENGINES

ENGINE

102J FT

PRESSURIZATION/VENT/PURGE SYSTEM,_

• AUTOGENOUS
• NORMAL OPERATION WI'IH SINGLE FAILURE
• GSE VENT/PRESSURIZATION CONNECTIONS IN AFT SKIRT
• HIGH ENGINE INLET PRESSURES FOR CHEAPER SYSTEM
• GSE He AND N2 PURGES

H2 FEED DUCTS(4)

,- ENGINE/VEHICLE INTERFACE

GSX0150--13

-HEAT SHIELD BCX_T

Figure 3-6. L O2/LH2 propulsion design integration features.
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• STRAIGHT AFT SKIRT SIMPLER TO MANUFACTURE

• SKIRT DIAMETER APPROXIMATELY SAME SIZE AS SRB

• NO TOWER CLEARANCE PROBLEM

• LOW ENGINE DEFLECTION WITH SHORT DEEP ENGINE THRUST BEAM
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- PREFERRED FOR KSC OPERATIONS
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Figure 3-8. Aft skirt and engine features.

The intertank adapter is a skin stringer with ring frame construction. The upper attachment

(thrust fitting) to the external tank is located in this section. The external tank thermal contrac-

tion loads are minimized by designing the LRB attachment frame so it can deflect and relieve

the load.

The aft skirt shell structure consists of skin, frames, hold-down members, and engine thrust

beam members. The thrust beams are short and deep to maintain low deflections.
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The structural design of the LRB was also influenced by the desire to:

• Minimize impact on ET structure during the prelaunch and ascent flight trajectory

• Keep impacts to ground support equipment at the launch pad to a minimum

The LO2/LH2 vehicle has the lowest weight and thrust of all vehicles studied, and therefore

requires the lowest overall attach loads. The structural analysis performed indicated that the

attach loads were considered to be within current limits and therefore, as shown in Figure 3-9,

no changes to the existing ET are required. Load analysis was also used to design the LRB

structure. For example, the loads that occur during launch (SSME thrust buildup, causing

swaying of stack) primarily governed the strength design of the aft skirt and the aft LH2 tank,

while the LO2 tank design was primarily governed by the loads during conditions at Max-g.

Another design consideration was the LH2 cryogenic tank shrinkage during fueling. The

shrinkage results from loading the attach struts between the LRB and the ET, while the LRBs

are still bolted tO the pad and support the entire stack. Figure 3-9 illustrates the amount of

shrinkage expected in the ET and LRB LH2 tanks. The preliminary analysis results indicate

the 18-ft-diameter tank of the LRB can accommodate the strut loads by local shell deflection,

which actually results in lower strut loads than those currently experienced with the less flex-

ible steel case of the SRB.

In order to minimize impacts to the existing ground equipment such as the ET umbilicals,

structures were designed to maintain minimum booster bending deflection while the stack is

still held down and the SSMEs are fired. A stiffness criterion of .24 Hz first bending frequency

was derived for this purpose. Figure 3-10 shows what is needed in wall thickness versus diame-

ter to maintain this minimum stiffness. Boosters below 16.5 feet in diameter incur a penalty in

weight as the thickness is increased to improve stiffness. The LO2/LH2 vehicle with a diameter

of 18 feet incurs no weight penalty to maintain this required stiffness.
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the system, data going to the Orbiter avionics and commands coming from the Orbiter avion-

ics can be manipulated to ensure consistency with the present Orbiter data protocol.

USE EXISTING ET INTERFACE ATTACH POINTS

MINIMIZE ET INTERFACE MODIFICATIONS

LO2/LH2
Pump

LOW THRUST, LOW WEIGHT
Loads LOWEST ATTACH LOADS

Fwd Attach IN UNPRESSURIZED
Fitting INTERTANK AREA

Aft Attach ATTACHED TO LH2 TANK
Struts/Frame TANK SHRINKS BUT A'I-I'ACH LOADS

STAY WITHIN ET LIMITS

• LRBs are fixed to MLP

• BothET and LRB LH2 tanks shrink during fueling

•Tensile loadsdevelop in thealt attach struts

• STS-26 Strut Loads measured priorto lift-offsmall compared to limitloads :
40 KLBS upper and lower struts.62 KLBS diagonalstruts

• Umit loads :
265 KLBS lower strut,393 KLBsdiagonalstrut
332 KLBS upperstrut

• LRB shell stiffnessis lower thanSRB - largerdiameter ,lowerwall thickness,
Aluminum structure

Cross-section tends to deform into egg shape
Relieves Strut Loads
Lower loadson ET

UndeformedShape
(before,%filling)

| Contracts_

DeformedShape
(After filling)
LRB Aft Attach Loads are lower than SRBs

_Tgure 3-9. Structural interfaces.
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MINIMUM REQUIRED FREQUENCY .24 HZ
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kTgure 3-10. Structural design considerations.
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3.6 AVIONICS SYSTEMS ARCHITECTURE SELECTION

The top objectives for the LRB avionics are to improve STS system reliability, while minimiz-

ing Orbiter software and hardware impacts. The system had to provide command and moni-

toring capabilities for the more complex liquid engines and subsystems, and reduce ground

operations and support requirements, while minimizing development cost and risk.

The architecture adapted as the baseline is illustrated in Figure 3-11. This system provides a

redundant three-string system to achieve the large reliability needed for the STS mission. In

addition, each LRB uses its own RF telemetry system, thus supporting the increased telemetry

requirements for the more complex LRB. By incorporating data processing capabilities into

the system, data going to the Orbiter avionics and commands coming from the Orbiter avion-

ics can be manipulated to ensure consistency with the present Orbiter data protocol.

OPTION 2 FEATURES

AUTONOMOUS FROM ORBITER

MINIMIZES ORBITER CHANGES

INCREASED RELIABILITY

REQUIRED FUNCTIONS
TANK PRESSURE CONTROL, PYROS,E'TC.
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TELEMETRY l FA'LURETOLERANTI LRBREMOTE VOTER

FUTURE GROWTH POTENTIAL
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HARDWIRE COMMANDS

MI,A.TIPt EXED COMM_NDS

LRB

I

I
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COLLECT. IRATE F
SYSTEM I GYRO /

.I ASSEMBL]
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l
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GPCs
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_-[[I FLIGHT
_CCI CONTROL

J// l FAILURE TOLERANT
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Figure 3-11. Basefined LRB avionics architecture,
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4 ÷ TRADES AND ANALYSES

During the first six months of the study, our engineering effort concentrated on trades and

analyses. Twelve of these were formally reviewed by an internal engineering review board

(ERB) at inception, midpoint, and conclusion. In addition to providing a consistent philoso-

phy and ground rules, these meetings were an opportunity to discuss interrelated findings

among the LRB study team. There have also been a number of detailed trades late in the study.

Three central questions on LRB concepts (summarized in subsections 4.1 through 4.4 and

Section 7) are:

• Which propellants best suit LRB?

• Should LRB be reusable?

• Which concepts best support alternate applications such as ALS?

Table 4-1 summarizes the results of these major trades. These issues are key to the LRB

concept selection process. After the early trades and analyses had eliminated some concepts,

we focused on three that could meet the requirements. In addition to the recommended

LO2/LH 2 concept, LOJRP-1 pump-fed and pressure-fed concepts are viable. The pressure-fed

concept is and will continue to be too high a risk until the technology is demonstrated as

planned in the Civil Space Technology Initiatives (CSTI) program under Booster Technology.

Once updated technology (combustion efficiency, chugging, pressurization, etc.) allows, the

pressure-fed concept might be an acceptable candidate. At this time we recommend an

LO2/LH 2 pump-fed LRB for STS and ALS, and development of one major rocket engine for

both programs. The following trades and analyses lead up to and support this concept selec-

tion.

Table 4-1. Major trade study results.

Trade Recommendation Rationale

Propellants LO2/LH 2 has least environmental impact. Storable propellants in such large quantities are
LOX/RP-1 and LO2/CH4 acceptable too risky

Geometry Cylindrical shape with diameters up to 18 ft Clocking, hammerheads, or tandem tanks are
too complex. New aero data 18 ff acceptable

Reusability Expend LRBs for flight rate < 15/year. ! Increased development cost and reduced
Reconsider limited engine reuse ascent reliability not justified at expected rates

Engine type Pump-fed gas generator; split-expander cycle Pressure-fed concepts offer great _otenti_l, but
aitemative need technology development

i-GSX0150-19
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Table 4-2 summarizes the numerous trades used to establish the configurations and refine

the concepts.

Table 4-2. Concept refinement trade studies.

Trade Recommendation Rationale

Pressure fed

Chamber pressure

Pressurization

Pump fed LO=/LH=

Number of engines

Chamber pressure

Expansion ratio

Initial T/W

Throttling

Structure

Stiffness

Material, construct

Avionics

Architecture

Thrust vector control

334 psi

Helihyox* with catalytic heating

4 on each LRB, with engine out capability

2250 psi

20

1.2 with 1 engine out

Two settings: 100% & 75%

Equivalent to SRB including thrust struc-
ture, and larger drain

2219 ring-stringer

Modified triple strtng

20 H.R electro-mechanlcal actuators

Minimum weight with acceptable
combustion stability

Simplicity and minimum weight

3 require large throttling range, 5 or
6 have lower reliability

Minimum cost vehicle

Minimum life cycle cost

Minimum thrust = minimum cost
and still clear tower

Less expensive than continuous
throttling

SSME ignition stagger too large an
STS impact

Stiffer and lighter at same cost,
2090 AI-Li not LO2 compatible

High reliability

Simplify KSC operations

*Helium (He) mixed with small amounts of hydrogen (H2) and oxygen i-GSX0150-26
(02) in non-flammable quantities

4.1 LRB PROPELLANT SELECTION

Data from this trade study was a major element in concept selection. Initially, propellant den-

sity was clearly a driver; low-density hydrogen resulted in very large LRBs, whereas storable

propellants allowed LRBs nearly as small as the current SRBs. Table 4-3 summarizes our ini-

tial propellant screening.

Table 4-3. Initial propellant screening.

Storables - Eliminated due to environmental and safety concerns

Metalized fuels - Eliminated due to advanced technology status

Tripropellants -- Eliminated due to vehicle and facility complexity

Propane - Eliminated. Preferred methane, which has better reusability and less spill
hazard due to lighter vapor

GSX0150-20
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Table 4-4 shows the characteristics of the major pump-fed propellant groups with respect to

key selection criteria. Thus far, no substantial discriminators exist between propellant systems

concerning launch facility compatibility. Consequently, that criterion is not shown.

Table 4-4. Pump-fed propellant system comparison.

Criteria LO2/LH2 LO_JHC LO2/HC/LH2 NTO/hydrazlnes

Safety • Detonation • Good • Detonation hazard • Detonation hazard,

hazard hypergolic

• Toxic, corrosive,

carcinogen

STS ° Large LRB • New HC system, • 3 storage transfer, • Smallest LRB

Compatibility ° Existing tankage not a major monitoring • New facility system

system Impact systems major impact

• Additional

storage required

• Low: Extensive

experience &
established data
base

Risk

Operational • More complex

Complexity than LO2/HC

Environmental • Benign exhaust
Impact products

• Low (LO2/RP-1) • Highest engine • High, due to

• Medium tech. & schedule safety/environmental

(LOz/CH4 & risk protection re(its

LO2/C3H8 • Extensive
experience &
established
database

• Limited propellant

production
capability

• Simple • Complex engine • Slow & complex

servicing/cycle launch process due

• Complex LPS to safety

control • Slow & complex
recov, and return

• Medium, CO2 • Medium • High, in case of

exhaust affect • CO2 exhausts accident
ozone affect ozone

GSX0150-21

The LO2/LH2 system is physically the largest, and therefore may have more impacts on the

STS and launch facilities (although thus far, no major problems have been uncovered). On the

positive side, LO2 and LH2 have the most environmentally favorable exhaust products, are

existent within the STS, and result in the lightest weight vehicle.

At the other extreme are the storables, which pose serious safety and environmental hazards

but are small and simple to operate. The LO2 hydrocarbon systems are reasonably compact,

are operationally simple, and exhibit good safety and environmental characteristics. The

LO2/RP-1 system, like LO2/LH2 and storables, operates routinely on launch vehicles today.
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The tripropellant combinations are reasonably compact, but the introduction of a third pro-

pellant and the need to develop a new type of engine results in high program risks.

As a group, the pressure-fed propellant systems, with the exception of those with metal ad-

ditions, are larger than the pump-fed (see Table 4-5). LO2/LH2 was found to be excessively

large and heavy, and therefore is not being considered in this comparison.

Of c0urse, comments from Table 4-4 pertaining to the propellants themselves, such as safety

and environmental issues, apply equally here.

Table 4-5. Pressure-fed propellant system comparison

LO=/HC NTO/Hydrazine Metallized/gel

Safety • Good • Detonation Hazard • Better than storables

Hypergolic

• Toxic,carclnogen corrosive

Rellability/STS • Lower than storables • Highest simple propulsion • Lower than storables (under
compatibility

• Large booster size sys study)
• Smaller booster size than • Booster similar to SRB

• (LO2/RP1
< LO2/C3H8 LO2/HC • New facility system
< LO2/CH4 • New facility system

• New HC tanking
system

• Low schedule risk

• LH2/RP1 and

LOz/C3H8 engines
tested, higher tech.

risk than hpergols

Operational • Simple (Best RP-1) • Complex launch processing • TBD
complexity launch processing due to safety

Environmental • Medium, COz • High (In case of accidents)
Impacts exhaust affect ozone

layer

Risk
• Higher schedule risk than • Technological issues still

LO2/HC unresolved

• Low technical risk • Highest technological and

• Engine tested schedule risk

• High for hypergol gels

• Medium for LO2/RP-1 gels

• =

GSX0150- 22

Metallized propellants are the only systems that offer the potential of LRBs that are equal to

or smaller than the present SRBs' Many unresolved operational and technological issues re-

main. Further development is required prior to their introduction.

Liquid hydrogen was a controversial choice from the beginning. At first look, it had major

advantages: no environmental impact from a spill or exhaust products and high Isp. The hydro-

gen-burning SSME is the only engine available in the half-million-pound thrust class if LRB

were needed very soon. But there were serious concerns that hydrogen LRBs were too large

and that the wider diameter would cause excessive aerodynamic loads on the Orbiter wing
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and/orthatlonglengths(withLO2tankforward)wouldcauseexcessiveloadsinto the ET inter-

faces. Numerical data on these loads was not available until recently. They are manageable.

Secondary criteria such as cost consequently became more important. Liquid hydrogen ve-

hicles tend to be more expensive than LO2/RP vehicles based on General Dynamics' long expe-

rience with Centaur and Atlas. There is still a strong interest on the ALS program in LO2/L,H2

systems, and commonality between ALS and LRB should yield cost savings. Therefore, we

continue to recommend LO2/LH2 as an LRB candidate.

4.2 REUSABILITY

This was a very broad trade study that compared the technical merits and cost effectiveness of

about 15 recovery concepts. These options included full recovery (appropriate for pressure-fed

LRBs whose tanks are strong enough to survive water impact such as an SRM), partial recov-

ery (for expensive engines like SSME), and no recovery. Flyback boosters were felt to be candi-

dates only for growth options because of their major impact on current STS compatibility.

Work concentrated on water recovery using parachutes or parawings to slow the descent. Our

subcontractor, Pioneer, provided data on these deployable aerodynamic devices.

The downselection process identified two recovery concepts that we considered the most

desirable on a technological basis: the downrange parachute recovery of a pressure-fed LRB

and the RTLS propulsion/avionics (P/A) module parawing towback of a pump-fed LRB. The

parachute recovery system of the pressure-fed LRB is comparable to the current SRB down-

range recovery system. It is the least complex and therefore should provide the most recoveries.

The parawing towback concept of the P/A module for RTLS recovery presents the lightest

parawing recovery system. The water landing system is considerably lighter than airstrip or

platform landing, which in turn reduces complexity and risk, and enhances reliability. The

LRB concepts were upsized to accommodate the added weight of recovery devices, sea water

sealing systems, disconnects, etc.

Rocketdyne and our ALS program then developed the idea that expendable engines should

demonstrate inherent life of at least five flights during qualification testing. To apply this con-

cept to LRB, a low-cost engine recovery module was examined, as shown in Figure 4-1. The

LO2/LH2 LRB was upsized about 3% to accommodate about 9,000 lb of separation and recov-

ery systems. We recommend further study and support of the ALS Booster Recovery Module

ADP. Until this data is available, we continue to recommend that the LRB be expendable.

The cost effectiveness of recovery is dependent upon three factors: attrition (number of

units lost due to high seas, bad parachutes, etc.), cost to refurbish, and DDT&E.
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Figure 4-1. Low-cost engine recovery module concept for LRB.

Cost sensitivities determined that the cost effectiveness of recovery is very sensitive to the

following three issues:

° The additional complexity of designing and manufacturing a component for extended man-

rated life vs. one flight

• The assumed recovery reliability

• The cost required to refurbish an item that has been successfully flown and recovered

Trade studies indicated that parachute recoverywas more cost-effective than towback, toss-

back, or flyback on a LCC basis. The parachute recovery concepts were also less costly on a

LCC basis than their respective expendable concepts, although the magnitude of these esti-

mated cost savings is considered marginal and nearly disappears when a 3% discount factor

is applied.

For the LO2/LH 2 concept, we traded expendable vs. two recoverable concepts based on

recovering only the engine. The recoverable options were a limited-life engine that has the in-

herent ability to perform five missions (four reuses) and an engine designed for a life of 20 mis-

sions. The engine was chosen as the reusable element because a shipset of engines represents

approximately 40% of the average unit cost of an expendable, pump-fed LO2/LH2 vehicle.

In completing the expendable vs. recoverable trade study a number of engine assumptions

were made, as shown in Table 6-3. This table indicates that the engine DDT&E cost for the

recoverable limited-life engine and recoverable engine with life of 20 missions is estimated to

cost 10% and 52% more than the expendable engine, respectively. In addition, the cost of refur-

bishing a recoverable engine was assumed to be 25% of the engine TFU cost.
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Table 4-6. Expendable vs. recoverable engine assumptions.

EXPENDABLE

ENGINE

NUMBER OF ENGINE USES 1

ENGINE COST COMPARISON

DDT&E 1.00(Ref.)
PRODUCTION(TFU) 1.00(Ref.)

% OF ENGINE TFU FOR N/A
REFURBISHMENT

RECOVERABLE RECOVERABLE
(LIMITEDLIFEENGINE) (ENGINELIFE=20 MISSIONS)

5 20

1.10 1.52
1.10 1.62

.25 .25
GSX0150-35

Based on these engine assumptions, a comparison of the LCC of the expendable vs. the two

recoverable options was completed as shown in Figure 6-2. Note that the crossing point for the

LCC of the recoverable vehicle with limited-life engine and the expendable vehicle occurs be-

fore 50 LRB flights. At this point the recurring savings of the recoverable vehicle with limited-

life engine are large enough to offset the additional DDT&E required for the recoverable ve-

hicle over the expendable vehicle. At 14 STS missions per year (244 LRBs) the LCC of the

expendable vehicle is estimated to be about 7% less than the recoverable with engine life of 20

missions and about 8% more than the recoverable vehicle with a limited-life engine. In addi-

tion, the LCC comparison does not appear to be very sensitive to the number of STS missions

per year (between 6 and 25).

The cost required to refurbish an engine is not well understood. As indicated in Figure 6-3,

we have assumed a refurbishment factor of 25% for the pump-fed LO2/LH2 engines. This sen-

sitivity analysis indicates that an engine refurbishment factor of 10% would be needed to make

the recoverable vehicle with engine life of 20 missions cost-competitive with the expendable

RECOVERABLE 25 (STS MISSIONS/YR)

$ 2 0 (ENGINELIFE- 20MISSIONS)'-_'jr i

:: ! !
I ,
!

0 I I I I I

0 100 200 300 400 500

LRBFLIGHTQUANTITY GSX0150-36

Figure 4-2. Expendable vs. recoverable L C C comparison.
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LRB. The likelihood of attaining a 10% refurbishment factor is quite low. In addition, the en-

gine refurbishment factor could increase to 50% before the LCC of the recoverable vehicle

with limited-life engine approaches that of the expendable vehicle. Although the engine refur-

bishment factor could be greater than 25%, we feel it is unlikely that it will approach 50%.

It is equally important to understand the sensitivity of cost to recovery reliability. A 90%

recovery reliabilitywas assumed in our trade study analysis, as shown in Figure 6-4. This figure

addresses the difference in the sensitivity of cost to recovery reliability for the two recoverable
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i
1
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ENGINE REFURBISHMENT FACTOR GSX0150-37

Figure 4-3. Engine refurbishment cost sensitivity.
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bTgure 4-4. Recovery reliability cost sensitivity.
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concepts.Therecoverablevehiclewithalimited-lifeengineislesssensitivetorecoveryreliabil-

ity thantherecoverablevehiclewithanenginelifeof20missions.Whenanenginedesignedfor
20missionsisunrecoverable,theenginelostisanexpensiveonewhichmayhavehadup to 19

reusesleft in it. Ontheotherhand,whenalimited-lifeengineisunrecoverable,theenginelost
isa lessexpensiveonewhichhadfouror lessreusesleft in it. Sothecostof replacementengines

is significantlydifferentfor thetworecoverableconcepts.

Fromthisanalysisweconcludethatrecoverablesystemswithenginesdesignedfor longlife
cannotcompeteeffectivelywith inexpensiveexpendableengines.In addition,thelimited-life,
recoverableengineconceptappearsto offersomepotentialcostbenefitsoverexpendables.

Thereareanumberof issuessuchasrecoveryreliability,enginerefurbishment,andverifica-
tion of reuseof anexpendableenginethat still mustbeaddressed.

WerecommendthatLRB beexpendable.Theadditionaldevelopmentexpenditureof ap-
proximately$1billion will benearlypaidbackafter 100flights.This is basedondeveloping

enginesandthewholepropulsionmodulefor approximately20reuses.Forvehicleswithhigher
flight rates,recoveryandreusemaybecost-effective.

4.3 LRB GEOMETRY, LENGTH AND DIAMETER

In the fall of 1987, NASA/MSFC initiated wind tunnel tests on STS configurations with LRBs

because of serious concerns about Orbiter wing loads. Cylindrical test shapes simulated LRBs

up to 21 feet in diameter and 190 feet long. Multidiameter (such as hammerhead) and nonsym-

metrical (clocked) arrangements were also tested.

The choice of LRB geometry is a complex problem involving aerodynamics, control, and

structural loads on the whole STS stack as well as the LRB itself.

Although optimal length-to-diameter ratios (L/D) have not been established, a typical fine-

ness ratio (L/D = 12.3) value has been examined for interface loads, and the results indicate

that this ratio is acceptable. KSC facility-derived limits on diameter (19 feet maximum) and

length (200 feet maximum) have also been identified. An LRB less than 170 feet long avoids

interference with the ET GOX vent arm. Aerodynamic and aerothermal effects have been ex-

amined, and LRB lengths between 175 and 185 feet have the highest drag. These constraints

are illustrated in Figure 4-2. Variations in length and diameter (for a given volume) have a small

(less than 1%) impact on vehicle gross weight.

Based on the results of wind tunnel tests and our analysis, we recommend flying at q-alpha

profiles that produce acceptable wing loading (LEMSCO Memo APO 208 4/27/88, "Minimiz-

ing Orbiter Wing Root Loads Impacts Due to the Incorporation of LRBs.") rather than using
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kTgure 4-5. LRB length and diameter constraints.

unconventional geometries such as hammerhead. We believe that LRBs up to 19 feet in diame- •

ter and 200 feet long are feasible within a L/D range of 9 to 14.

SRMs have protruding rings and an electronic box that increase their effective diameter to

nearly 16 feet. Therefore, diameters of 18 feet force only a modest reduction in max q-alpha

and max q (see Section 4.4).

4.3.1 KSC FACILITY CONSIDERATIONS -- The VAB doors are 871.5 inches wide. When

the ET diameter (331 inches) is subtracted from this distance and provisions are made for

dynamic clearances, the maximum LRB diameter possible is 19 feet.

The only limit on LRB length inside the VAB is imposed by the clearance above the support

beams that separate highbays 2 and 4 from the VAB transfer aisles. A fully assembled LRB will

have to be lifted through one of these openings before stacking on an MLR The height (consid-

ering crane apparatus requirements) is about 257 feet -- we recommend limiting the LRB to

200 feet. Taller LRBs would require modification of these beams. Because these beams are

major structural members, their removal or modification is unlikely. In addition, inside the

VAB high bays, numerous changes will have to be made to service platforms for all our LRB

designs. The number and extent of modifications required increase as the length and diameter

increase, but we do not feel that work platform impacts should be used to constrain LRB size.
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At the launch pads (39A and B) the ET GOX vent arm is located at elevation 265, and the

maximum length a LRB could attain and fit under the arm is about 170 feet. This limit is not

firm. A modified GO)( vent arm could be constructed, tested offline, and subsequently be

changed out on the pad in a relatively brief operation. Wider LRBs encounter difficulties with

LRB engines extending outside the flame trench and interfering with the GH 2 vent arm. The

flame trench problem is significant and requires further analysis. As shown in Figure 4-3,

preliminary indications are that these problems can be solved by designing specialized flame

holes in the new MLPs. The LO2/LH2 LRB aft skirt appears to be only slightly larger than the

current SRB skirt and, coupled with the smaller 74-inch engines, it potentially eliminates the

problem for this configuration. The GH2vent arm impact problem applies to all LRB configu-

rations. More analysis of actual LRB trajectories is required before the problem is completely

resolved. All parties involved agree that the problem can be solved through trajectory shaping

and redesign of the T-0 umbilical.

4.3.2 AERODYNAMIC CONSIDERATIONS -- The aerodynamic considerations on LRB

length and diameter were approached in two groups: effects on the Orbiter only (primarily

wings), and effects on the mated vehicle (aerothermal heating, drag, and stability).

When nominal STS trajectory design is used with larger LRBs, loading on the Orbiter wings

becomes a problem resulting from Orbiter wing root shear at max q. The ascent trajectory can

NORTH

SRB EXHAUST
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SRB/LRB
FLAME

SOUND SUPPRESSION
_'YST[M

-- ORBffER FLAME
DEFLECTOR

[_ A/._ SRB EXHAUST

[ / HOLE

_- 275.7- ///_ EXTERNAL TANK

.I-),-- [ 696.0 G-E0
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\

ORBITER EXHAUST HOL£

SEXTON A-A

bTgure 4m6. LOe/LH2 flame trench design.
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bemodifiedsuchthatthedynamicpressureor alpha is reduced and the overall wing loading is

kept within limits. As the dynamic pressure is lowered, however, a performance loss results

that drives booster sizing to a slightly larger volume. Figure 4-4 shows that the performance

penalties are not significant with diameters up through 18 feet, as long as there are no external

protuberances on the LRB under the wing.
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tqgure 4- 7. LRB diameter effects on angle of attack and dynamic pressure.

4.4 AVIONICS SYSTEMS ARCHITECTURE SELECTION

Our objective for the LRB avionics is to improve STS system reliability while minimizing Or-

biter software and hardware impacts. The system had to provide command and monitoring

capabilities for the more complex liquid engines and subsystems, while reducing ground oper-

ations and support requirements. The system also had to minimize development cost and risk.

Several different avionics system architectures were evaluated, as shown in Table 4-7.

An improved technology Centaur avionics-based system was selected. We also recommend

implementing failure-tolerant techniques to provide the high reliability needed. Flight control

commands such as engine start/shutdown, TVC, and separation will come from the

Orbiter avionics as is presently done for SRBs. This will allow the use of the existing command

lines and therefore provide the least impact to the present Orbiter hardware and software

configuration.

4-12



Thearchitectureadaptedasthebaselineis illustratedinSection3,Figure3-11.Thissystem

providesa redundantthree-stringsystemto achievethelargereliabilityneededfor theSTS
mission.In addition,eachLRB usesitsownRF telemetrysystem,supportingtheincreased

telemetryrequirementsfor themorecomplexLRB.Byincorporatingdataprocessingcapabili-
tiesintothesystem,datagoingtotheOrbiteravionicsandcommandscomingfromtheOrbiter
avionicscanbemanipulatedto ensureconsistencywith thepresentOrbiter dataprotocol.

Table 4-7. LRB avionics architecture trade comparisons.

S

SRB-baaed Modern avionics MPRAS-based

Vehicle interface impacts

Ground interface impacts

More AWCCl-i_iriiSel9:

i, High_¢:
_ulr_i_:.!;! :._!i:.:;.::i:i/
::: ::: .;:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

_mplex
ehgrhe _o!!_}_r

:LZ:_:::_::"::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

H/W- low

• Through Orbiter

SAV - medium
• Booster checkout
• Booster

monitor/command

H/W - low
• Autonomy incorporated

as needed

S/W - medium
• Caution & warning
• Booster to booster

communication

H/W - medium
• Booster umbilicals
• Booster communication

S/W - medium
• Booster checkout
• Booster

monitor/command

H/W- low
• Autonomy incorporated
as needed

S/W - medium
• Caution & warning
• Booster to booster

communication

H/W- medium
• Booster umbilicals
• Booster communications

SAN - medium
• Booster checkout
• Booster

monitor/command

Operational complexity

Program risk
- Schedule
- Availability

Reliability

Cost
- Development
- Recurring

Growth potential

High
• Orbiter-dependent

Low

Medium

Meets requirements

Medium
Low

Limited

Low
• Autonomous

Low

Low

Meets requirements

Low/medium
Low/medium

Good

Low

I • Autonomous

........................................._:i:!:_:i:i:_:_:i_i_i_i_iiiiiii_::i::ii_i_:.,
;;7

M_il_m

Meets requirements

L_

Excellent

] i1 Discriminators used toeliminateavionics options.
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GSX0150, Sec 5, 2/28/89

5 ÷ PROJECT PLANNING

During this study, preliminary plans were established for the fuU-scale development (FSD)

phase of the LRB program. This section summarizes these plans, which are addressed in great-

er detail in the Preliminary Project Implementation Plan, Appendix 2.

5.1 PROJECT MANAGEMENT

The LRB project will be organized according to the program Work Breakdown Structure

(WBS). A preliminary WBS for the LRB program is shown in Figure 5-1. Each functional orga-

nization supporting the LRB program will be assigned responsibility for certain WBS ele-

ments and will receive a separate budget for each WBS element it must support.

Since the objective of the LRB program is to enhance the performance and safety of a

launch system that is already operational, timely implementation of the LRB program is par-

ticularly vital to its success. A preliminary LRB project master schedule is shown in Figure 5-2.

Since a final selection between pump-fed and pressure-fed LRBs has not yet been made, this

schedule shows engine development milestones for both concepts.

5.2 SYSTEMS ENGINEERING AND INTEGRATION

Integration responsibilities of the LRB prime contractor include definition and refinement of

system requirements, development of compatible interface designs, support for the develop-

ment of an integrated STS system verification program, and support for the development of

lqgure 5-1. LRB work breakdown structure (development and production phases).

GSX0150-27
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launch site operations. The role of the systems integrator on this program is especially critical,

due to the LRB's integration into an existing manned launch system. Major LRB system re-

quirements that will drive the vehicle design and operational procedures include:

• Ascent performance

• Intact abort

• Safety

• STS compatibility

• Minimization of development and life cycle costs

• Evolution and growth

5.3 DESIGN AND DEVELOPMENT

The primary objective of the LRB design and development effort is to generate a safe, reliable,

low-cost design that can be readily integrated with the STS. Our recommended design ap-

proach is to maximize the use of proven design concepts that offer sufficient performance mar-

gins. Early trade-off and sensitivity studies have addressed performance vs. complexity,

weight, cost, and risk; these analyses need to be continued through the early part of the FSD

phase. A commonality plan should be completed prior to the Preliminary Requirements

Review (PRR).

5.4 MANUFACTURING APPROACH AND FACILITIES

The LRB manufacturing approach is based upon strong cooperative efforts between design

and producibility engineers. Producibility engineers will actively participate in all trade

studies, engineering reviews, and concept reviews to assure that manufacturing considerations

are incorporated into the design. The manufacturing approach for the LRB is to provide in-

house assembly, test, and checkout of the vehicle and to procure from subcontractors the

detail components that go into those assemblies.

The optimal location for the LRB final assembly facility has not yet been determined. Locat-

ing the factory at or near the launch site would eliminate costly and potentially hazardous

transportation problems. If the final assembly facility is not in the immediate KSC vicinity, it

will need to have waterway access to the launch site, since the LRB will be too large for land or

air transportation. If transportation is required, certain checkout procedures may need to be

performed twice -- at the factory and again at KSC. These factors favor location of the LRB

final assembly plant close to the launch site, although economic or political factors may

ultimately determine that the factory be placed somewhere else.
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5.5 TEST AND VERIFICATION

The LRB test verification approach must take into consideration the many facets that drive the

verification activities in the development of requirements and the application of methods to

meet requirements. Figure 5-3 shows the major elements of the LRB test program. Particular

development tests are listed in Table 5-1. The following is a list of key program features that will

affect verification requirements and procedures:

• The LRB will be used for STS manned missions

• The LRB will provide very high thrust levels

• The main engine area will be subjected to a very high vibration/acoustic environment

• The LRB will perform during a very critical period of flight

• Two LRBs will perform in parallel during their normal use

• The LRBs are an integral part of the Space Shuttle system

5.6 LAUNCH OPERATIONS AND FACILITIES

There will be three major tasks associated with LRB ground operations (see Figure 5-4): LRB

checkout and NASA acceptance, vehicle integration, and integrated Shuttle vehicle checkout

_E_Ts / DESIGN ,,/" ;ABmcAT,o ACCEPTANCE/ FUGHrTEST OPERATIONS

II VERIFICATION REQUIREMENTS JIDENTIFICATION AND ALLOCATION

VERIFICATION

PROCESS

CE RTIFfCATIDN

ACTIVITIES

COMPONENT. RREAOBOARO.I

| AND ASSEMBLY I

| DEVELOPMENT , J
I

I

I[ --'_I vERIFICATIOP,I AtIALYSI$

i ' SUBSYSTEM
I DEVELOPMENT

r J L

il QUALIFICATION

-1 I I
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Figure 5-3. Major elements of the LRB test program.
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[Tgure 5-3. Major elements of the LRB test program.
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kTgure 5-4. Launch operations time table.

and launch operations. Once final checkout and NASA acceptance have been completed, the

LRB will be delivered to the Vehicle Assembly Building (VAB) transfer aisle. The LRB will

then be mated to the MLP and all the appropriate systems such as data, fuel, environmental

control, and purge will be connected. Once the hookups are verified, the LRBs will be aligned

and the ET mated. The Orbiter will then be mated. Once the system is fully integrated, there

will be a Shuttle Integrated Test (SIT) to verify compatibility and to test the fully integrated

vehicle. The vehicle will then be transported to the launch pad, where payload integration and

additional testing will be performed.

The LRB will introduce several significant improvements to STS launch operations. The use

of LRBs will eliminate many hazardous operations in the VAB because they will not be pro-

cessed with live fuel as with the SRBs. In addition, the LRB will arrive fully assembled, elimi-

nating the time-consuming task of booster assembly from the critical path of Shuttle process-

ing. In fact, the LRB schedule should reduce current processing time lines by over 20 days. This

reduction will greatly increase the likelihood of attaining the desired 14 launches per year. The

LRB also improves the STS launch windows by increasing the temperature range at which the

Shuttle can launch.

The existing launch processing facilities must be modified to accommodate the larger size of

the LRBs and to provide a propellant servicing capability at the launch pads. The principal

facilities that must be modified are the launch pad and the VAB. The principal change to the
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launchpadwill betheinstallationof new propellant storage and transfer systems. The GH2

vent arm T-0 umbilicals may also need to be modified. For certain LRB configurations, the ET

GOX vent arm would have to be modified to enable them to "wrap around" the LRB. The

principal changes required to the VAB will be modification of interior platforms to accommo-

date the larger-diameter LRB. In addition, GDSS recommends that LRB checkout and accep-

tance take place at the assembly site to minimize new facilities needed at KSC.

New equipment required will include two MLPs (one new, one modified existing MLP). The

new MLPs will feature systems and designs to accommodate an LRB such as: a new propellant

system, a new holddown system to provide a soft reIease for the STS, and enlarged flame holes

for the larger LRB engine plumes.

In addition to these facilities, KSC recommends addition facilities and modifications as

shown in Figure 5-5 to allow further improvements in Shuttle processing and less potential for

schedule impacts during the transition from SRB operations to LRB operations. These modi-

fications include removal of ET processing to a joint ET/LRB processing facility and the acti-

vation of VAB highbay 4.

Table 5-1. LRB development tests (preliminary list).

Wind Tunnel
Aerodynamic wind tunnel pressure & loads test
Aerodynamic wind tunnel stability & control test
Wind tunnel captive trajectory test
Base heatingJreclrculating wind tunnel test
Aerodynamic heating
Structures and Mechanisms
Engine gimbal frequency response test
Aft skirt structural test
Model firewall test
LRB jettison test
Forward attach fitting load test
Aft attach fitting load test
Separation explosive device functional test
Engine boot material heating test
Nose cone material heating test
Tank insulation characteristics
Welding process development tests °
• Weld coupons test
* Weld joint cyclic load tests
Component development testing (rings, domes,
baffles, etc.)
GSE
Model flame bucket/flame deflector test
Launcher operating load/deflection test
LOz/LHz line retract tests
Rise-off panel test

IEngines
Injector
• Mixture ratio

• Ignition stability
• Throttling characteristics
Thrust chamber assembly
• Thermal characteristics
• Materials selection
• Errosion
Controller
• Thermal environment

• Control Algorithms
• Response Characteristics
• BIT/BITE requirements
Nozzle

• Cooling
• Inertia
• Gimbal Limits
• Flex Mechanism
Thrust vector control system
• Hydraulic system (pumps & lines)
• Force requirements
• Response characteristics
Throttling device
• Mixture ratio

• Response Characteristics
Component development testing

i-GSX0150-47
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5.7 MISSION OPERATIONS SUPPORT

The LRB prime contractor will have an ongoing role supporting NASA mission planning,

operations, and analysis. This task will include development of LRB flight requirements and

constraints, analysis of LRB mission performance, and support of NASA/MSFC and the STS

Program in accomplishing these functions for the integrated launch vehicle. During the LRB

flight test program, additional tasks will be required, including definition of flight test require-

ments and comprehensive analysis of mission data. These responsibilities will be carried out

under the coordination of the SE&I organization and will include support of all LRB project

technical groups.

Table 5-2. Recommended facility changes.

Facility Estimated Cost*

VAB High Bays 1 & 3 16.8
Activate VAB HB 4

Launch Control Center 13.2

New MLP

Mod MLP 3**

Pad mods

LETF

MLP Parksite

Power dist

122.3

80.0

96.2

26.7

2.4

16.9

ET/LRB processing facility/GSE

Total $374.5

* In FY87 $M

** No new MLP required - modify existing MLP (18-ft
LO2/LH2vehicle)

i-GSX0150-50

5-7





GSX0150, Sec 6 2/28/89

6 ÷ COST ANALYSIS

Cost analysis results have been an important input to LRB trade study downselections and for

developing program planning cost data. Life cycle cost (LCC) estimates were one of the key

discriminators in downselection decisions on the SSME vehicle, expendable vs. reusable ve-

hicles, numerous engine propellant combinations, and propellant tank material/construction

selection.

6.1 COST ESTIMATING METHODOLOGY

In completing cost estimates and trade studies it is essential to recognize all of the design and

operational differences between the various alternatives. For example, to complete a vehicle

propellant tank trade study between two alternative material types (2219 aluminum and graph-

ite/epoxy) Engineering would resize (performance and mass properties) the vehicles based on

each tank material. The resizing effort provides the cost analyst new vehicle mass properties

and engine thrust levels based on the two different tank materials. The respective vehicle mass

properties, engine thrust levels, and appropriate development and manufacturing complexi-

ties that distinguish the two tanks are inputs to the model for each trade study alternative. The

resulting LCC estimates combined with numerous technical considerations become the dis-

criminators used to downselect to one tank material. This is the normal trade study method

that we have employed to complete LRB vehicle downselections.

6.2 COST ESTIMATES

The selected vehicles for the final report are expendables with the following propellant combi-

nations: pump-fed LO2/LH2, pump-fed LO2/RP- 1, and pressure-fed LO2/RP-1 (see Table 6-1).

The cost estimates are based on the 14 STS flights per year mission model (244 LRBs) and are

in FY 87 dollars in millions excluding contractor fee, government support, and contingency.

Table 6-1 presents the vehicle DDT&E and production cost by subsystem for the selected con-

cepts. As has been the case during this study, the major subsystem cost contributor for

DDT&E and average unit cost (AUC) for each of the vehicle concepts is the main engine. The

only exception is the pressure-fed LO2/RP-1 vehicle, in which the AUC of the structure/TPS

subsystem is the major cost contributor.

The three selected vehicle LCC estimates are presented in Table 6-2 and include nonrecur-

ring cost, recurring production cost, and recurring operations cost. The nonrecurring cost in-

cludes the vehicle DDT&E, Orbiter and external tank modifications, new and modified facili-

ties, and STS systems engineering and integration (SE&I). The LCC of the three selected LRB

vehicles is approximately $10 to 12 billion.

6-1



Table 6-1. DD T&E lproduction cost summary.

l__-__.=Concept

Cost Elemem

Structures/TPS

Separation system
Propulsion system
Main engines
Avionics/electrical power
Tooling/test ops/GSF_/S/VV
Systems engr/program mgmt

TOTAL

AvCr_rQe Unit Cost

Structures/TPS
Separation system
Propulsion system
Main engines
Avionics/electrical power

Sustaining tooling/final assy
Systems engr/program mgmt

TOTAL

Pump-fed
New
LHz/LO2*

231
23

146
1007

7O
462
218

8
1
3

13
3
3
2

33

Pump-fed
New
RP-1/LO=*

206
23

169
878

70
424
204

1974

7
1
4
9
3
2
2

Press-fed
New
R P -1/LO=*

248
3O

388
435

70
433
188

17922157

28

9
1

10
5
3
4
2

34

*Costs are in F'Y 87 $M GSX0150-32

Table 6-2. Life cycle cost summary.

Concept

Cost Element

Nonrecurrlnci

Vehicle DDT&E
Orbiter modifications
ET modifications
Facilities
STS SE&I

Total nonrecurring

Recurrlnq

Vehicle production
Launch operations

Total recurring

Pump -fed
New

LH2/LO=*

2157
229

20
413
105

2924

8001
83O

Pump-fed
New

RP-1/LO=*

1974
229

20
357
105

2685

6873
818

Press-fed
New

RP-1/LO=*

1792
229

20
372
105

2518

8362
830

8831 7691 9192

Total LCC 11755 10376 11710

*Costs are In FY 87 $M GSX0150-3_
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Annual

Funding
Cost

(87 SM)

The concept downselection from three selected vehicles to a pump-fed LO2/LH2 vehicle

considered all data developed during the study, especially propellant combination data, safety,

technical risk, LCC, and evolution and growth potential. The attributes of the pump-fed

LOE/LH2 vehicle were judged to be best when considering all of these issues.

A schedule of annual funding of all nonrecurring cost for the pump-fed LO2/LH2 vehicle is

based on the overall program schedule and is shown graphically in Figure 6-1. The nonrecur-

ring cost of the pump-fed LO2/LH2 vehicle is spread by fiscal year into engine nonrecurring,

other nonrecurring and total nonrecurring less engine nonrecurring. This figure indicates that

the vehicle reaches peak annual funding of about $750 million during Phase C/D. In addition, if

the USAF continues to fund the ALS engine development, which is common to LRB needs,

then the peak funding drops to about $550 million.

800

600 ine Nonrecurr

,oo.OOJ a,
300 Nonre urr

200100_ Less Engine Nonrecurring

0 ! I I I I

1 991 1992 1993 1 994 1 995 1996

figure 6-1. Pump-fed L02/LH2 annual funding schedule.

6.3 ALS/LRB SYNERGISM

A cooperative USAF/NASA LRB program could provide significant cost benefits that result

from the use of a common LRB on the ALS and the STS. In addition, the synergism that results

from the use of the LRB's pump-fed LO2/LH 2 engine on the ALS core could provide more cost

benefits. A common development program could provide DDT&E cost savings of up to $1.6

billion compared with funding two independent programs. A common production program

couId provide additional learning and rate effects, which would result in a decrease in the aver-

age unit cost of LRBs for the STS.

6.4 COST ANALYSIS CONCLUSIONS

• LRB vehicle DDT&E cost is approximately $2 billion

• LCC is $10 to 12 billion

• Engines remain the major cost contributor

• ALS/LRB synergism could provide significant cost savings
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7 ÷ EVOLUTION AND GROWTH

A close look at several LRB concepts used for growth STS (Shuttle-C), standalone boosters,

and ALS was incorporated into this Phase A study. The LO2/LH2 option emerged as the clear

favorite.

All three ALS contractors recommend a LO2/LH2 core with an engine thrust in the half-

million-pound class. Closer comparison with the GDSS concept for ALS showed that the same

engine could be used for STS LRB and the ALS core, except for differences in the expansion

ratio and throttling needed. At MSFC, technology work is proceeding on the LO2/LH2 engine

for ALS called the Space Technology Engine Program (STEP). There are a number of potential

benefits to both NASA and the USAF if one large new rocket engine were developed for both

ALS and STS. This commonality with ALS was a major factor in our recommending a liquid

oxygen/liquid hydrogen concept for the STS LRB.

7.1 SUMMARY OF RESULTS

This study has established that the LRB concept can be used successfully in many alternate

applications. This flexibility provides additional benefits to the basic STS-LRB program such

as potential LRB development cost savings due to DDT&E cost sharing with other programs

and reductions in production unit cost because of increased rates of production to support

multiple applications.

Major conclusions of the alternate applications study are summarized in Figures 7-1 and

7-2, and are listed on the following pages. For further information on LRB alternate applica-

tions and evolutionary growth, refer to Volume II, Appendix 9, Book 5.

7-1



i-

l

;B. =

- i

Payload (KIb)
(nominal mission
model)

Performance (total
booster impulse)

Man-rait_::t

Flight rate/year

STS LRB

7.5

(160 nmi 28.5 °)

540 m Ib sec

Yes

14

ALS

80

(80x150 nmi 28.5 °)

640 m Ib sec

No

10

(capability to 20)

Shuttle-C

100-150

(220 nmi 28.5 °)

,._,500 m Ib sec

No

2-3

l

=!

I:i
Standalone

TBD

(150 nmi 28.5 °)

250 + m Ib sec

No

,--,10

Engine-out Yes Yes Yes TBD
capability

Booster reusability No Engine TBD No
recovery

• i

IOC 1995 ,--,2000 1993 1995-1996

i-GSX0150-40
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[Tgure 7-I. LRB applications to other vehicle programs.
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1figure 7-2. LRB evolution and growth results•
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LRB applications to ALS:

• The LO2/LH2 LRB is best suited for ALS because of common propellants.

• The LO2/LH2 LRB has virtually the same engines as the ALS, and therefore a common

engine development program is feasible (see Figure 7-3).

• A family of vehicles with payload capabilities ranging from 50 to 200 Klb can be formed by

varying the number of LRBs used and the number of engines per LRB. One such possibility

is shown in Figure 7-4.

• Use of LRBs for ALS can reduce NAS,_s LRB DDT&E and recurring production costs by

sharing program costs with USAF.

ill

i

I
!

i
I
|

I
|

I
i

I

I
i

Propellants

Dry weight (KIb)

No. of engtnea

Engine-out capability**

Engine

Thrust, vac NPL (sac)

Isp, vac NPL {sec)

Pc NPL {psla)

Mixture ratio

Area ratio

Throttleability

Reliability (90% confidence)

LRB ALS Booster

LO2/LH2LO2JLH2

129
4

1

558

411.4

225O

6.0

20:1

100% ot 75%

0.99

186

7*

1

612

429.4

2000

6.0

38.8

None

0.99

(_ * Corn mon engine for core & I:x:x:>sler
- '" ** With mission-complete capability

LO2/LI_2 LRB GSX015O-42

t50.6 FT

i !

( i '
!

_.F=-F.=::__
i

I
, I
! i

i

I

ALS BOOSTER

Figure 7-3. LRB/ALS booster comparison.
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TITAN N

248 F-l"

AVAILABLE:

PAYLOAD:

• LEO (80 X 150 NMI, 28.5 DEC)

VEHICLE:

• GLOW

• INERT WT

LRB (AS CORE)
LRB (AS STRAP-ON BOOSTER)

TRAJECTORY:

• MAXQ

• MAXG

• STAGGING VELOCITY

• TOTAL DELTA VELOCITY

MAJOR MODIFICATIONS TO LRB

(FOR USE AS CORE):

O

1997 TO 1998

80,000 LB

2.54 M LB

115,890 LB
130,600 LB

850 PSF

5.5 g's

11,633 FT/SEC

28,857 FT/SEC

REMOVE 2 ENGINES AND ATFENDANT TVC

MODIFY THRUST STRUCTURE

ADD GN&C, AND TELEMETRY AVIONICS

ADD NEW FLIGHT SOFTWARE

REMOVE NOSE CONE AND ADD PAYLOAD FAIRING ADAPTER
ADD BOOSTER STRUCTURAL ATTACHMENTS

ADD ACS SYSTEM AND DEBOOST MOTOR GSX0150-43

PTgure 7-4. LRB core with two strap-on LRBs.

LRB applications to Shuttle-C:

• LRBs provide approximately 20 Klb greater payload capability than SRBs for Shuttle-C.

• Use of LRB engines as SSME replacements may lower Shuttle-C costs per flight.

• Applicability of LRBs and LRB engines to Shuttle-C provides NASA with an additional

measure of assured access to space.

• The LRB provides many of the same benefits to the Shuttle-C that it provides the Shuttle

such as improved reliability (i.e., engine-out capability) and safer operations (i.e., hazard-

ous propellants are removed from the VAB).
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LRB application to standalone expendable launch vehicles:

• LRB standalone expendable launch vehicles can be used as an initial building block for ALS

in the lower payload range.

• New LRB standalone launch vehicles provide an additional measure of assured access to

space -- an alternative to Titan W, as shown in Figure 7-5.

* The LO2/LH2 LRB has the best performance of candidate LRB designs for standalone

launch vehicle applications.

• The recommended LRB standalone launch vehicle is a core-to-orbit concept that uses

one or two LRB boosters in a modular approach to deliver 25 to 80 Klb of payload to low

Earth orbit.

AVAILABLE: 1997 TO 2000

TITAN IV FAIRING

UPPER STAGE_'
(1 LRB ENGINE)

.LRB FIRST
STAGE
(3 ENGINES) _

._ --'r-

.-4- i

' I!

• P, 4¢LC_

2
_L 290 FT

L(:I_

-1-
J

la

.._°

Ili 'L.

PAYLOAD:

• LEO (80 X 150 NMI, 28.5 DEG) 40,000 LB

VEHICLE:

• GLOW 1,260,370 LB

• INERT WT
UPPER STAGE 53,051 LB

TRAJECTORY:

• MAX Q 413 PSF

• MAX G 5.5 g's

• STAGGING VELOCITY 4,903 FT/SEC

• TOTAL DELTA VELOCITY 32,408 FT/SEC

MAJOR LRB MODIFICATIONS

• REMOVE 1 ENGINE AND ATI'ENDANT TVC

• MODIFY THRUST STRUCTURE

• CHANGE FLIGHT SOFTWARE

• REMOVE NOSE CONE AND ADD INTERSTAGE ADAPTER

UPPER STAGE FEATURES:

• SINGLE LRB BOOSTER ENGINE

(CONSIDERING USING NOZZLE EXTENTION FOR HIGHER AR)

• PROVIDES ENTIRE VEHICLE GN&C GSX0150-44

lqgure 7-5. LRB with new upper stage.
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